Robot Kinematics: Forward and Inverse Kinematics

نویسندگان

  • Serdar Kucuk
  • Zafer Bingul
چکیده

Kinematics studies the motion of bodies without consideration of the forces or moments that cause the motion. Robot kinematics refers the analytical study of the motion of a robot manipulator. Formulating the suitable kinematics models for a robot mechanism is very crucial for analyzing the behaviour of industrial manipulators. There are mainly two different spaces used in kinematics modelling of manipulators namely, Cartesian space and Quaternion space. The transformation between two Cartesian coordinate systems can be decomposed into a rotation and a translation. There are many ways to represent rotation, including the following: Euler angles, Gibbs vector, Cayley-Klein parameters, Pauli spin matrices, axis and angle, orthonormal matrices, and Hamilton 's quaternions. Of these representations, homogenous transformations based on 4x4 real matrices (orthonormal matrices) have been used most often in robotics. Denavit & Hartenberg (1955) showed that a general transformation between two joints requires four parameters. These parameters known as the Denavit-Hartenberg (DH) parameters have become the standard for describing robot kinematics. Although quaternions constitute an elegant representation for rotation, they have not been used as much as homogenous transformations by the robotics community. Dual quaternion can present rotation and translation in a compact form of transformation vector, simultaneously. While the orientation of a body is represented nine elements in homogenous transformations, the dual quaternions reduce the number of elements to four. It offers considerable advantage in terms of computational robustness and storage efficiency for dealing with the kinematics of robot chains (Funda et al., 1990). The robot kinematics can be divided into forward kinematics and inverse kinematics. Forward kinematics problem is straightforward and there is no complexity deriving the equations. Hence, there is always a forward kinematics solution of a manipulator. Inverse kinematics is a much more difficult problem than forward kinematics. The solution of the inverse kinematics problem is computationally expansive and generally takes a very long time in the real time control of manipulators. Singularities and nonlinearities that make the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network

Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the DenavitHartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks f...

متن کامل

Design, Modeling, Implementation and Experimental Analysis of 6R Robot (TECHNICAL NOTE)

Design, modeling, manufacturing and experimental analysis of a six degree freedom robot, suitable for industrial applications, has been described in this paper. The robot was designed on the assumption that, each joint has an independent DC motor actuator, with gear reduction and measuring sensor for angular joint position. Mechanical design of the robot was done using Mechanical Desktop and ma...

متن کامل

حل سینماتیک مستقیم روبات استوارت- گوف با استفاده از روش ترکیبی بهبود ‌یافته (ترکیب شبکه عصبی و نیوتن- رافسون مرتبه 3)

Many efforts have been done in recent years to decrease the required time for analysis of FKP (Forward Kinematics Problem) of parallel robots.This paper starts with developing kinematics of a parallel robot and finishes with a suggested algorithm to solve forward kinematics of robots. In this paper, by combining the artificial neural networks and a 3rd-order numerical algorithm, an improved ...

متن کامل

Kinematics Modeling and Simulating of a New Surgical Robot

This paper introduced design analysis of a new 5DOF surgical robot used for minimally invasive surgery. The kinematics modeling is studied by solving the forward and inverse kinematics of the robot using the Denavit-Hartenberg convention and geometrical method. Robot kinematics simulation is built by creating the 3D CAD model of the robot and patient, then a kinematic motion simulation of a sur...

متن کامل

Software Development for the Kinematic Analysis of a Lynx 6 Robot Arm

The kinematics of manipulators is a central problem in the automatic control of robot manipulators. Theoretical background for the analysis of the 5 Dof Lynx-6 educational Robot Arm kinematics is presented in this paper. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. The Denavit-Harbenterg (D-H) model of representation is used...

متن کامل

Forward Position Kinematics of a Parallel Manipulator with New Architecture

The forward position kinematics (FPK) of a parallel manipulator with new architecture supposed to be used as a moving mechanism in a flight simulator project is discussed in this paper. The closed form solution for the FPK problem of the manipulator is first determined. It has, then, been shown that there are at most 24 solutions for FPK problem. This result has been verified by using other tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012